Question: -

With the usual notation, in $\triangle ABC$, if

$$\angle A + \angle B = 120^{\circ}$$
, $\alpha = \sqrt{3} + 1$ and $b = \sqrt{3} - 1$, then the ratio $\angle A : \angle B$, is (2019 Main, 10 Jan II)

(a) 7:1

(b) 3:1

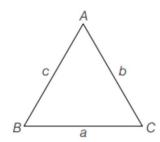
(c) 9:7

(d) 5:3

Solution: -

For a $\triangle ABC$, it is given that $a = \sqrt{3} + 1$,

$$b = \sqrt{3} - 1$$
 and $\angle A + \angle B = 120^{\circ}$



Clearly, $\angle C = 60^{\circ}$

[:
$$\angle A + \angle B + \angle C = 180^{\circ}$$
]

Now, by tangent law, we have

$$\tan \frac{A - B}{2} = \frac{a - b}{a + b} \cot \frac{C}{2}$$

$$= \frac{(\sqrt{3} + 1) - (\sqrt{3} - 1)}{(\sqrt{3} + 1) + (\sqrt{3} - 1)} \cot \left(\frac{60^{\circ}}{2}\right)$$

$$= \frac{2}{2\sqrt{3}} \cot (30^{\circ})$$

$$= \frac{1}{\sqrt{3}} \times \sqrt{3} = 1$$

$$\Rightarrow \tan\left(\frac{A-B}{2}\right) = 1 = \tan 45^{\circ}$$

$$A-B$$

$$\Rightarrow \frac{A-B}{2} = 45^{\circ}$$

$$\Rightarrow \angle A - \angle B = 90^{\circ}$$

On solving $\angle A - \angle B = 90^{\circ}$ and $\angle A + \angle B = 120^{\circ}$, we get

$$\angle A = 105^{\circ} \text{ and } \angle B = 15^{\circ}$$

So,
$$\angle A : \angle B = 7:1$$